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Cadre Mathématique

Notations

On définit

• Un espace probabilisé (Ω,F ,P).
• Un espace d’états E. Pour cette présentation, E = {1, 2, . . . ,M}

est fini.

• Une suite de variables aléatoires Xn : Ω 7→ E où n représente
l’évolution dans le temps.

• Quand E est fini, on décrira la loi d’une v.a X avec un vecteur ligne
X ∼ (P(X = 1), . . . ,P(X = M)).

Exemple : le modèle de la météo

Ω =
{

, ,
}

et E = {1, 2, 3}.
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Châıne de Markov

Définition

Soit (Xn)n≥0 une suite de variables aléatoires prenant leurs valeurs dans un
espace d’états E . On dit que (Xn)n≥0 est une châıne de Markov si elle
vérifie la propriété de Markov, c’est-à-dire :

P(Xn+1 =j | Xn = i ,Xn−1 = xn−1, . . . ,X0 = x0)

= P(Xn+1 = j | Xn = i),

pour tout n ≥ 0 et pour tout (i , j , x0, . . . , xn−1) ∈ En+2.

La châıne est dite homogène si ses probabilités de transition ne
dépendent pas de n :

pij := P(Xn+1 = j | Xn = i) = P(X1 = j | X0 = i),

pour tout i , j ∈ E et n ∈ N.
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Matrice de transition

Définition

Dans le cas d’une châıne de Markov homogène, on peut définir sa matrice
de transition P :

P := (pij)1≤i ,j≤n.

Par exemple :

0.5 0.5 0

0.3 0.3 0.4

0.1 0.5 0.4
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Équation de Chapman-Kolmogorov

Pour i , k ∈ E on définit

p
(n)
ik := P(Xn = k | X0 = i),

on note P(n) la matrice de transition en n étapes.

Théorème (équation de Chapman-Kolmogorov)

Soit (Xn)n≥0 une châıne de Markov sur un espace d’états E avec matrice
de transition P, alors on a

P(n) = Pn.

La matrice de transition en n étapes est égale à la puissance n-ième de la
matrice de transition.

Cela nous permet de décrire la loi de Xn matriciellement.
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Loi de X2 dans le modèle de météo

Avec la formule des probabilités totales, on a

P(X1 = j) =
∑
i∈E

P(X1 = j | X0 = i)︸ ︷︷ ︸
=pij

P(X0 = i).

Donc, si on note µ le vecteur ligne de la loi de X0, on a X1 ∼ µP.
Par exemple, si µ = (1, 0, 0) alors d’après l’équation de
Chapman-Kolmogorov

X2 ∼ (1, 0, 0)×


0.5 0.5 0

0.3 0.3 0.4

0.1 0.5 0.4

×


0.5 0.5 0

0.3 0.3 0.4

0.1 0.5 0.4

 .
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Loi de X2 dans le modèle de météo

Avec la formule des probabilités totales, on a

P(X1 = j) =
∑
i∈E

P(X1 = j | X0 = i)︸ ︷︷ ︸
=pij

P(X0 = i).

Donc, si on note µ le vecteur ligne de la loi de X0, on a X1 ∼ µP.
Par exemple, si µ = (1, 0, 0) alors d’après l’équation de
Chapman-Kolmogorov

X2 ∼ (1, 0, 0)×


2
5

2
5

1
5

1
25

11
25

7
25

6
25

2
5

9
25

 =

(
2

5
,
2

5
,
1

5

)
.
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Classification des états

Définition

• On dit qu’un état i ∈ E communique avec j s’il existe n tel que
P(Xn = j | X0 = i) > 0

• Il est transitoire si la probabilité d’y revenir en temps fini est
strictement inférieure à 1 et récurrent sinon.

• Un état i ∈ E est périodique s’il existe un entier d > 1 tel que les
retours à i se font uniquement aux multiples de d.

Une châıne est dite irréductible si tous les états communiquent entre eux.

Dans l’exemple de la météo,
la châıne de Markov est
irréductible.
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loi stationnaire

Définition

Une loi stationnaire π est un vecteur ligne à M coordonnées dont la
somme des coefficients vaut 1 et telle que

πP = π.

Cela signifie que si π est la loi initiale alors, la châıne gardera la même loi
à chaque instant.

Proposition

Si la châıne de Markov est irréductible alors il y a existence et unicité de
la loi stationnaire.
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Temps moyen passé à chaque état

Théorème (Ergodique)

Soit (Xn)n≥0 une châıne de Markov irréductible de loi stationnaire π. Pour
toute fonction f : E → R , on a la convergence suivante :

1

n

n∑
k=1

f (Xk)
n→∞−−−→

∑
i∈E

f (i)πi .

En particulier, si f est l’indicatrice de l’état j :

f (x) =

 1 si x = j ,

0 sinon.

Le théorème décrit le temps moyen passé à l’état j .
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loi stationnaire pour la météo

La châıne est irréductible donc
il existe une unique loi station-
naire. Il n’y a plus qu’à résoudre
le système

π


0.5 0.5 0

0.3 0.3 0.4

0.1 0.5 0.4

 = π,

on trouve π =
(
11
36

5
12

5
18

)
.

Le théorème ergodique nous permet d’affirmer que, sur un temps long, il
fera du soleil 11 jours sur 36 en moyenne.
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Espace d’états E fini - Résumé

• À partir d’une dynamique d’évolution, on sait construire la matrice
de transition de la châıne.

• Grâce à l’équation de Chapman-Kolmogorov, on sait décrire la loi
de la châıne à tout instants n.

• On sait classifier les états : transitoire ou récurrent.

• Quand la châıne est irréductible, on a vu un résultat de convergence
ergodique vers la loi stationnaire. Sous des hypothèses plus fortes, il
y a aussi convergence en loi de la châıne vers la loi stationnaire.

Quid de E infini ?
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Châınes de Markov en espace d’états infini

• La matrice de transition devient un opérateur, il y a aussi une
équation de Chapman-Kolmogorov

• L’irréductibilité de la châıne n’implique plus nécessairement
l’existence d’une loi stationnaire.

• Il faut en plus que la chaine soit récurrente positive pour avoir
existence et unicité.

• Dans le cas d’une châıne irréductible et récurrente positive il y a
convergence en loi de la chaine et un théorème ergodique.
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Le voyageur perdu - Marche aléatoire en 2-dimension

Définition

• Xn ∈ Z2 est la position du
voyageur à l’instant n, à chaque
instant il avance au hasard dans
l’une des 4 directions.
• On suppose qu’il a commencé
sa marche X0 = (0, 0), là ou se
trouve son logement.

A t’il une chance de rentrer en temps fini ?
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Le voyageur perdu - Marche aléatoire en 2-dimension

Proposition

Une marche aléatoire (Xn)n≥0 dans Zd est récurrente si et seulement si

+∞∑
i=1

P(Xi = 0) = +∞.

• On peut montrer que P(X2n = 0) ≃ 1
πn et donc (Xn)n≥0 est

récurrente i.e elle revient à l’origine une infinité de fois (p.s).

• En revanche, elle n’est pas récurrente positive et elle n’a pas de
loi stationnaire.

Remarque

En 3-dimension, on a P(X2n = 0) ≃ 1
(2πn)3/2

donc la châıne n’est pas

récurrente. Cela signifie qu’un pigeon ayant perdu tout sens d’orientation
a des chances de ne jamais rentrer au nid !
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Merci pour votre attention !
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